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Functional implications of orientation maps in
primary visual cortex
Erin Koch1, Jianzhong Jin1, Jose M. Alonso1 & Qasim Zaidi1

Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as

iso-orientation domains radiating from pinwheel centres, where orientation preferences of

neighbouring cells change circularly. Whether this orientation map has a function is currently

debated, because many mammals, such as rodents, do not have such maps. Here we show

that two fundamental properties of visual cortical responses, contrast saturation and cross-

orientation suppression, are stronger within cat iso-orientation domains than at pinwheel

centres. These differences develop when excitation (not normalization) from neighbouring

oriented neurons is applied to different cortical orientation domains and then balanced by

inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these

local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and

higher contrast gain of iso-orientation cells facilitate extraction of object contours from

images, whereas broader tuning, greater linearity and less suppression of pinwheel cells

generate selectivity for surface patterns and textures.
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T
here is a particular satisfaction in neuroscience when
anatomical structures can be associated with specific
physiological functions. In mammalian brains, this has

been accomplished at early stages of the visual pathway but has
not been possible for orientation maps in the visual cortex.
Here we present experimental and computational results that
reveal a significant association between the structure of
cortical orientation maps and the functions of local cortical
circuits. Hubel and Wiesel1 showed that preference for a limited
band of orientations is a defining characteristic of neurons in
mammalian striate cortex, and that neurons with similar
orientation preferences are physically located next to each other
in the visual cortex of carnivores and primates. Later studies
demonstrated that cortical orientation maps are organized in a
mosaic consisting of iso-orientation domains arranged radially
around pinwheel centres, where orientation preference changes
rapidly along the circular locus2–4. Although many models have
been proposed to explain how the beautiful geometrical
properties of the pinwheel pattern could develop5–8 and
why they are remarkably similar across many species, the visual
cortices of many mammals including rodents, squirrels and
lagomorphs do not have orientation maps9–11. Therefore, it
remains a mystery whether topographically mapping stimulus
orientation is an epi-phenomenon or has significant functional
implications12–14. Orientation maps are possibly the most
established cortical maps and the most tractable to investigate,
but the issue of cortical map functions may prove to be much
broader as optical imaging and multi-electrode arrays reveal maps
in other areas of cortex15,16.

Nauhaus et al.17 provided strong evidence that neurons near
pinwheel centes are less selective for stimulus orientation than
those in iso-orientation domains. Therefore, pinwheel centres
could respond better than iso-orientation domains to image
patterns made of multiple orientations. Cortical processing of
isolated orientations is important for extracting contours and
edges18,19, three-dimensional shape from shading20 and the
direction of local motion1. However, processing multiple
orientations simultaneously is essential for more sophisticated
visual analyses, such as extracting image patterns21, pattern
motion22,23, pattern symmetry24, material properties25 and three-
dimensional shape from texture26–28. Even though processing
stimuli with multiple orientations is important, the cortical
responses to those stimuli are thought to be strongly suppressed
by a neuronal mechanism known as cross-orientation suppression.
This mechanism reduces the response of a neuron to its preferred
orientation when another orientation is present in the stimulus,
even if this orientation does not evoke a response29. Although
cross-orientation suppression was initially thought to originate
from intra-cortical inhibition30,31 and thalamo-cortical synaptic
depression32, it is now believed to be caused by saturation
in the contrast response function of thalamic neurons33,34. Our
results show that the pendulum needs to swing back towards
cortical processes to some extent.

The contrast response function of a neuron describes how
instantaneous inputs are mapped to outputs and how neuronal
responses saturate with contrast35. A compressive response
function implies that the response to a sum of stimuli will be less
than the sum of the responses to the individual stimuli, so response
saturation can affect a variety of aspects of visual processing,
including spatial frequency selectivity36, stimulus salience37,38

and sensitivity to natural images that contain multiple
orientations, both stationary33,34 and moving23. Contrast
response saturation is likely to originate at the photoreceptor
output39 and be effectively transmitted to the thalamus and visual
cortex36. Pre-cortical contrast saturation thus suppresses cortical
responses to stimuli consisting of multiple orientations33,34 and

preventing this from happening is important for pattern perception
and requires intra-cortical processing. Our results demonstrate that
local discontinuities in the orientation maps (pinwheel centres)
allow local cortical circuits to do exactly that.

By performing horizontal penetrations with multi-electrode
arrays through cat primary visual cortex, we show that cortical
responses from iso-orientation domains and pinwheel centres not
only differ in their orientation selectivity but also in their contrast
saturation and cross-orientation suppression. We then show that
these response differences emerge from two robust computational
principles of the visual cortex, excitation from orientation-tuned
neighbours and divisive normalization from non-oriented
inhibitory interneurons40. Based on image processing
simulations, we then propose that these differences in contrast
saturation and orientation suppression, created by local
circuits within the orientation map of primary visual cortex,
allow downstream neurons in higher levels of cortex to specialize
for detecting either edges and contours of objects, or surface
textures and patterns.

Results
Electrophysiology. We performed simultaneous recordings from
neurons that were horizontally arranged in cat visual cortex using
linear arrays of 32 electrodes with 100 mm separation between
electrodes. These recordings allowed us to distinguish horizontal
tracks passing through iso-orientation domains (Fig. 1a), which
showed limited changes in orientation preference and high
orientation selectivity, from those running near pinwheel centres
(Fig. 1b), which showed rapid changes in orientation preference
and low selectivity. The difference in orientation selectivity
between iso-orientation domains and pinwheel centres held at
different contrasts (Fig. 1c,d) and differences in orientation
processing were even more obvious when using grating plaids as
stimuli. In the iso-orientation domain (Fig. 1e), cortical responses
were driven when the components of the grating plaid had the
same preferred orientation (horizontal), but were severely
suppressed when the orientation of one of the grating
components was different. Conversely, in the pinwheel centre
(Fig. 1f), cortical responses were driven by a large variety of
grating plaids and multiple orientation combinations. In addition,
Naka-Rushton fits of contrast response functions (Fig. 1g,h)
showed greater saturation (lower C50 values) in the iso-orienta-
tion domain than the pinwheel centre (C50: 0.269 versus 0.429).
Next we quantify the population variation of these properties
across orientation domains and then show how they arise from
local circuit computations.

To quantify the influence of orientation map topography, we
calculated the Local Homogeneity Index (LHI) of the horizontal
track in which the cortical response was measured, as the rate of
change in orientation preference with cortical distance17

(see Methods). In agreement with previous studies, we
confirmed through visual inspection that sites with lower LHI
(closer to 0) are near pinwheel centres and sites with higher
LHI (closer to 1) are near iso-orientation domains. Our ranges of
LHI estimates are also similar to previously reported values in the
cat (multi-unit activity, MUA: 0.1282–0.9670, median¼ 0.7857;
single-unit activity, SU: 0.2855–0.9646, median¼ 0.6252).

We first demonstrate the effect of local orientation structure on
orientation processing. Consistent with Nauhaus et al.17, the LHI
was negatively correlated with orientation tuning width in our
measurements (Fig. 2a–c, MUA: R¼ � 0.4681, Po0.0001,
n¼ 303 (6 cats); SU: R¼ � 0.3716, P¼ 0.0032, n¼ 61 (6 cats);
SU single cat: R¼ � 0.4740, P¼ 0.0348, n¼ 20), that is, neurons
located in iso-orientation domains with high local homogeneity
had narrower orientation tuning than those located in regions
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with low local homogeneity (putative pinwheel centers). Second,
we demonstrate that the processing of multiple orientations also
varies systematically across orientation domains. In fact,
cross-orientation suppression was often so strong that the
response to the plaid was less than the response to just the
grating component at the preferred orientation. We calculated a
Suppression Index (SI) as 1 minus the response to the plaid
divided by the response to the preferred component.
Cross-orientation suppression is most often demonstrated with
added orientations orthogonal to the preferred orientation and
for such plaids (Fig. 2d–f) we found a clear positive relationship
between LHI and SI (MUA: R¼ 0.3514, Po0.0001; SU:

R¼ 0.3076, P¼ 0.0159; SU single cat: R¼ 0.5159, P¼ 0.0199).
In addition, when mean suppression over all the plaids containing
the preferred orientation was considered (Fig. 2g–i), we found a
similar range to the orthogonal plaid, as was the relation to the
LHI (MUA: R¼ 0.3415, Po0.0001; SU: R¼ 0.3915, P¼ 0.0018;
SU single cat: R¼ 0.6615, P¼ 0.0015). It is noteworthy that
Fig. 2d,g show results from six animals and the results for each
animal show the positive correlation we describe (R¼ 0.6055,
Po0.0001; R¼ 0.59081, P¼ 0.00012; R¼ 0.46682, P¼ 0.0247;
R¼ 0.3674, P¼ 0.02326; R¼ 0.3615, P¼ 0.0159; R¼ 0.28407,
P¼ 0.123). Cross-orientation suppression is thus stronger for
neurons located in iso-orientation domains than for neurons
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Figure 1 | Responses from iso-orientation and pinwheel sites. Recordings from two representative sites using a 32 channel probe (100mm between

recording sites) inserted tangentially into primary visual cortex. Left column: iso-orientation site. Right column: pinwheel site. (a,b) Polar plots showing the

orientation preference for each of the two sites and their nearest two sites on either side, separated by 100 mm. (c) Peristimulus time histogram matrix for

gratings oriented at 0�, 22.5�, 45�, 67.5�, 90�, 112.5�, 135� and 157.5� (left margin) at contrasts¼ 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1.0. (top margin). This

site responds primarily to horizontal orientations. (d) Peristimulus time histogram matrix for the same gratings for a broadly tuned site. (e,f) Peristimulus

time histogram matrix of responses to plaids composed of gratings at 50% contrast, oriented as in the top and left margins. (g,h) Responses to increasing

contrast of single gratings of preferred orientation, fit with a Naka–Rushton function. Lower semi-saturation constant (C50) corresponds to greater

response compression.
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located closer to pinwheels. These correlations suggest that
local orientation neighbourhoods within the cortex do in fact
contribute to the processing of multiple orientations, most
probably fine-tuning the feed-forward suppression from the
thalamus. Parenthetically, we find that there is also a significant
negative correlation between half-width at half-height of
orientation tuning and the mean SI (MUA: R¼ � 0.4086,
Po0.0001; SUA: R¼ � 0.5342, Po0.0001), and later discuss
the implications for pattern perception. For 6 out of 303
multi-unit sites, the SI is negative, that is, the response to the
plaid was larger than the response to the preferred component,
but there are no negative indices for the single cells. Five of these
multi-units show broad orientation tuning; thus, the responses to
plaids may have summed responses from cells with differing
orientation preferences.

The difference in the contrast response curves across
orientation domains (Fig. 1) could also be demonstrated in the
population response. The LHI was negatively correlated with
the semi-saturation contrast (Fig. 3a–c, MUA: R¼ � 0.3611,

Po0.0001; SU: R¼ � 0.3485, P¼ 0.0059; SU single cat:
R¼ � 0.4480, P¼ 0.0476), indicating that cortical responses
saturate less with increasing contrast near pinwheel centres than
in iso-orientation domains. It is noteworthy that when contrast
response curves are fit by the Naka-Rushton function, a smaller
semi-saturation constant implies earlier saturation. However, the
earlier saturation can be altered by a larger exponent that changes
the rise of the curve. Interestingly, iso-orientation domains
showed smaller semi-saturation constants despite the fact
that the exponent of the Naka-Rushton function tended to be
higher (Fig. 3d–f, MUA: R¼ 0.1017, P¼ 0.0772; SU: R¼ 0.3013,
P¼ 0.018; SU single cat: R¼ 0.4316, P¼ 0.0574). Higher
exponents have also been linked to greater stimulus selectivity35

and this will turn out to be the case for iso-orientation domains.
As no single parameter of the Naka-Rushton curve completely
describes the nonlinearity of the contrast response curve, we
devised a new nonlinearity index based on departure from
linearity from half-maximum response to maximum response,
with 0.0 indicating perfect linearity, þ 1.0 perfect compression
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Figure 2 | Association between stimulus orientation and cortical orientation topography. Left column: multi-unit activity (N¼ 303; 6 cats). Middle

column: single neuron activity (N¼61; 6 cats). Black lines depict best-fitting linear regression. Right column: single neuron activity for one cat (N¼ 20).

(a–c) Orientation tuning width versus local orientation homogeneity. (d–f) SI for the orthogonal plaid (composed of preferred grating and the orthogonal

grating) as a function of local orientation homogeneity. (g–i) Mean SI (average suppression across all plaids containing the preferred orientation) as a

function of the local orientation homogeneity.
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and � 1.0 perfect expansion (see Methods). Cells in low
homogeneity domains were generally close to linear, whereas
cells at higher homogeneity domains ranged from almost linear to
almost perfectly compressive, yielding a positive relation between
response non-linearity and the homogeneity index (Fig. 3g–i,
MUA: R¼ 0.3402, Po0.0001; SU: R¼ 0.4864, Po0.0001; SU
single cat: R¼ 0.5840, P¼ 0.0069). These results suggest that local
computations in cortical orientation neighbourhoods also shape
the contrast response function. Importantly, the correlations
between the cortical semi-saturation contrast and the mean SI
were weak and inconsistent (MUA: R¼ � 0.1933, Po0.0001;
SUA: R¼ 0.2089, P¼ 0.1060). This result goes against the
negative correlation expected between pre-cortical response
compression and cross-orientation suppression33,34. We will
later explain the reason for this discrepancy in terms of the
cortical computations in our model.

Excitation–normalization neural model. We used a computa-
tional model to investigate the role of the cortical network in
shaping the orientation tuning, stimulus selectivity and contrast
saturation relayed by thalamo-cortical connections. We set our-
selves the task of building the simplest feed-forward model that
would simultaneously account for narrower orientation tuning,
greater response compression and greater cross-orientation
suppression in iso-orientation domains than at pinwheel centres.

The retinal, thalamic and cortical components of the model are
illustrated in Fig. 4a and the equations are given in Methods. The
image was first passed through a photoreceptor compressive
nonlinearity39 that made the retinal response to a compound
stimulus weaker than the sum of the responses to the
components. The retinal output was then convolved with
thalamic receptive fields modelled as difference of Gaussian
functions and the thalamic outputs combined in a push–pull
circuit to create elongated cortical receptive fields41,42. The output
of the push–pull stage was then passed through an expansive
spiking nonlinearity43. These stages predict cross-orientation
suppression at the cortical level33,34, but do not explain how the
topography of the orientation map affects the contrast response
functions and orientation suppression of the visual cortex.

Using two-photon imaging, Levy et al.44 found no relationship
between the geometry of the dendritic arbour and the local
homogeneity in the orientation map, suggesting that all layer 2/3
neurons integrate inputs similarly from all their neighbours.
Therefore, we used the same parameters throughout the cortex
and applied the same cortical interactions, irrespective of the local
arrangement of orientation preference. The first component we
used was distance-weighted excitation from surrounding oriented
neurons. As cells in iso-orientation domains are surrounded
by cells with similar orientation preference, excitation had the
effect of differentially increasing the response to the preferred
orientation. This, in turn, narrowed the orientation tuning and
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Figure 3 | Association between response contrast nonlinearity and cortical orientation topography. Left column: multi-unit activity (N¼ 303; 6 cats).

Middle column: single neuron activity (N¼ 61; 6 cats). Right column: single neuron activity for one cat (N¼ 20). (a–c) Semi-saturation value as a function

of local orientation homogeneity. Black lines depict best-fitting linear regression. (d–f) Exponent of Naka–Rushton fit as a function of local orientation

homogeneity. (g–i) Nonlinearity Index (a value closer to 1 corresponds to a less linear response and a value closer to 0 corresponds to a more linear

response) as a function of local orientation homogeneity.
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increased the cross-orientation suppression. In pinwheel
domains, excitation from surrounding cells with different
orientation preferences differentially increased cell response to
non-preferred orientations, thus broadening orientation tuning
and decreasing cross-orientation suppression. In addition, the
effect of the surround excitation in our model was to reduce
compression in the contrast response curves.

Our model assumed the same pre-cortical contrast response
across the orientation map; thus, we needed to increase the
compression more in iso-orientation domains than pinwheel
centres to match the experimental data, while not adversely
affecting the other cortical response properties. To achieve this,
we used a standard hyperbolic form of self-normalization but
replaced the conventional semi-saturation constant by the output
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Figure 4 | Cortical EN model reproducing differences between iso-orientation domains and pinwheel centres. (a) Model schematic: inputs were passed

through a photoreceptor compressive nonlinearity. The retinal output was convolved with difference-of-Gaussian LGN receptive fields and combined in a

push–pull manner, to create elongated cortical receptive fields that were run through an expansive spiking nonlinearity. Neighbouring V1 neurons had

orientation preferences corresponding to iso-orientation and pinwheel domains. The cortical components were excitation from surrounding oriented

neurons, followed by divisive self-normalization with the output of a non-oriented inhibitory neuron added to the denominator. (b–d) Left: predictions for

iso-orientation domain cortical output (red triangles) versus thalamic input for narrowly tuned neurons (black circles). Right: predictions for pinwheel

domain cortical output (blue triangles) versus thalamic input for broadly tuned neurons (black circles). (b) Orientation tuning. (c) Contrast response.

(d) Responses to images of increasing orientation complexity: preferred grating and plaids of 2, 4 and 8 equally spaced orientations including the preferred.

(e) Top row: a natural image with salient edges and surface patterns (Lu, K. Peacock wooing peahen (Creative Commons Attribution 2.0 License),

http://birds.wikia.com/wiki/File:Peacock%2Bwooing%2Bpeahen-2008.jpg, 2003). Second row: images processed through the model: (left) two bars and

(right) a rosette pattern. Third row: heat maps showing summed response of eight narrowly tuned model neurons with equally spaced orientation

preferences in an iso-orientation domain. Bottom row: heat maps showing summed response of eight broadly tuned model neurons with equally spaced

orientation preferences in pinwheel centre.
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of non-oriented inhibitory neurons with severely compressed
response functions45. As excitation increased responses more for
iso-orientation domains than pinwheel centres, a hyperbolic
normalization with the same parameters throughout the cortex
had the effect of increasing compression more for iso-orientation
domains than pinwheel centres, in accord with the physiological
results. It is noteworthy that this form of normalization will
reduce the amount of cross-orientation suppression when
decreasing the cortical semi-saturation constant and thus will
reduce the negative correlation between the two values that would
be expected if there was no modification of thalamic inputs. We
will refer to this model as the excitation–normalization (EN)
model.

The combined effects of the two cortical components are
illustrated and compared with the input from the thalamus in
Fig. 4b–d. The population receptive field of thalamic afferents is
less balanced in ON and OFF responses at pinwheels, thus leading
to a tendency for broader orientation selectivity than in other
cortical domains46. The excitatory cortical circuit further narrows
the orientation tuning from the thalamic components in the iso-
orientation domain as illustrated for a narrowly tuned cortical
input in Fig. 4b (left). It also broadens the tuning in the pinwheel
neighbourhood as illustrated for a broadly tuned cortical input in
Fig. 4b (right). As a consequence, the tuning distribution is
narrower for the iso-orientation domain than for the pinwheel
centre, in agreement with the experimental results. Moreover, even
though the normalization component is identical in the
two cortical regions, it yields more saturation in cells within
iso-orientation domains than pinwheel centres (Fig. 4c). For
completeness, Supplementary Fig. 1 shows the effects of intra-
cortical EN circuits on narrowly and broadly tuned neurons within
each cortical region (iso-orientation domain and pinwheel).

To predict the EN model’s performance in more complex
stimulus patterns, we compared the thalamic and cortical outputs
generated in response to a sinusoidal grating and plaids made of 2,
4 or 8 gratings with equally spaced orientations including the
preferred one. A narrowly tuned cell exhibits cross-orientation
suppression just from the thalamic input, as would be expected
from the early response compression. The response decreases with
the addition of more orientations to the stimulus, because contrast
is reduced for the preferred grating to keep the total contrast equal
to 1.0 (Fig. 4d left, black). In addition, suppression is further
enhanced by the cortical network in iso-orientation domains
(Fig. 4d left, red). The broadly tuned cell exhibits cross-orientation
suppression that is similar to the narrowly tuned cell, due to the
same early response compression. However, the broadly tuned cell
responds to the additional oblique gratings; therefore, the
responses to four and eight grating plaids increase (Fig. 4d right,
black). In addition, the cross-orientation suppression is further
reduced by the cortical network in pinwheels, leading to enhanced
responses for the complex plaids (Fig. 4d right, blue).

The difference between iso-orientation domains and pinwheel
centres is seen clearly by processing patterns and contours
through two simulated extra-striate cells, one pooling outputs
from eight cells in an iso-orientation domain and the other from
eight cells in a pinwheel centre (Fig. 4e). The former responds
strongly to the isolated contours and hardly at all to the pattern.
The latter gives a weak response to the isolated contours, but
recreates the pattern. As a result, extra-striate neurons that pool
outputs from iso-orientation domains will provide information
about isolated edges and contours, whereas extra-striate neurons
that pool outputs from pinwheels will provide information about
patterns and textures.

After generating these predictions, we measured responses to
pinwheel patterns in new experiments (three cats) and compared
them with responses to gratings of preferred orientations.

We found that responses to octotropic plaids (eight gratings)
are significantly higher in pinwheels than in iso-orientation
domains (Fig. 5a, MUA: R¼ � 0.3730, Po0.0001) and relative
responses increase with broadness of tuning width (Fig. 5b, MUA:
R¼ � 0.5339, Po0.0001), thus confirming the EN model’s
predictions.

In summary, our simulations show that applying the same
neural computations uniformly across cortex can generate different
response properties in pinwheel centres and iso-orientation
domains. The excitatory cortical circuit proposed in our model
generates cortical compartments that differ in orientation
homogeneity and tuning, but also in contrast saturation and
response suppression to stimulus patterns. The narrow orientation
tuning, high contrast sensitivity, and pronounced cross-orientation
suppression of iso-orientation domains seems ideal to detect edges
in natural images. Conversely, the broad orientation tuning and
limited cross-orientation suppression in pinwheels should allow
processing of stimulus patterns made of multiple orientations such
as textures.

Given that divisive normalization seems (theoretically) so
omnipresent and accounting for so many cortical response
patterns47, we present an explicit argument as to why such a
normalization is excluded from our model of cortex.
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Figure 5 | Association between multiple orientation stimulus response

versus local orientation topography and orientation tuning width.

Stimulus was an octotropic plaid composed by summing eight gratings

equally spaced in orientation. Multi-unit activity from three cats (N¼ 167).

Octotropic plaid response is normalized to the maximum response of the

unit. (a) Normalized octotropic plaid response as a function of local

orientation homogeneity. (b) Normalized octotropic plaid response as a

function of half-width at half-height of the orientation tuning curve.
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Figure 6 | Cortical normalization model predictions for differences between iso-orientation domains and pinwheel centres. (a) Model schematic: inputs

were passed through a photoreceptor compressive nonlinearity. The retinal output was convolved with difference-of-Gaussian LGN receptive fields and

combined in a push–pull manner to create elongated cortical receptive fields that were run through an expansive spiking nonlinearity. Neighbouring V1

neurons had orientation preferences corresponding to iso-orientation and pinwheel domains. The cortical component is normalization from surrounding

oriented neurons with a factor added to the denominator, to keep it from going to zero. (b–d) Left: predictions for iso-orientation domain cortical output

(red triangles) versus thalamic input for narrowly tuned neurons (black circles). Right: predictions for pinwheel domain cortical output (blue triangles)

versus thalamic input for broadly tuned neurons (black circles). (b) Orientation tuning. (c) Contrast response. (d) Responses to images of increasing

orientation complexity: preferred grating and plaids of 2, 4 and 8 equally spaced orientations including the preferred.
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We demonstrate that local normalization fails to reproduce the
differences in cross-orientation suppression and orientation
tuning between iso-orientation domains and pinwheel centres
that we empirically measured. To test the effects of local
normalization, we used the same pre-cortical components as
our model, but replaced the multiplicative surround excitation by
divisive normalization from surrounding neurons (Fig. 6a).
In iso-orientation domains, divisive normalization from
surrounding neurons broadens the tuning curve by reducing
responses to preferred orientations (Fig. 6b). In pinwheels,
divisive normalization can leave the tuning curve essentially
intact (Fig. 6b) or even narrow it by reducing responses to
orientations on the flanks, that is, the opposite of the
empirical results. Divisive normalization has been commonly
used to explain the compression of contrast response curves
and here it leads to greater nonlinearity for iso-orientation
domains, consistent with the empirical results. However, divisive
normalization makes the wrong prediction for processing
multi-orientation patterns as shown in Fig. 6d. For
completeness, Supplementary Fig. 2 compares the effects of
divisive normalization for narrowly and broadly tuned cells in
iso-orientation domains and pinwheels.

Divisive normalization could be made consistent with the
empirical results by normalizing the responses with distant cells
that have orthogonal orientation preferences in iso-orientation
domains and the same orientation preferences in pinwheels. This
would not only be mathematically ad hoc by using different
principles for different orientation domains, but would also go
against a large body of physiological data. For example, it would
predict that the strongest inhibition in most cortical neurons
should be evoked by a stimulus orientation orthogonal to the
optimal, whereas intracellular recordings have consistently demon-
strated that the strongest inhibition is generated by the optimal

orientation48–52. It is noteworthy that there is an essential
normalization component to the EN model. This component
keeps the excitation within bounds and is responsible for the
greater response compression in iso-orientation domains.

Busse et al.53 generalized measurements of cross-orientation
suppression to different relative contrasts of tests and masks.
They found summation in cross-orientation suppression when
contrasts of the mask and test were similar, but a shift to a
winner-take-all rule to mask or test whichever had significantly
higher contrast. Busse et al.53 suggested that the winner-take-all
result provided strong support to a surround normalization
model expressed in terms of stimulus contrasts. We found that
surround normalization was not needed to explain their results.
We entered their stimulus contrast values into our model and
discovered that even the classical thalamic cross-orientation
model predicts summation when contrasts are similar and greater
cross-orientation suppression when contrast is higher for one
component (Fig. 7). Further, the additional cross-orientation
suppression for iso-orientation domains predicted by our model
completes the winner-take-all. Busse et al.53 presented population
results for cat visual cortex and, as iso-orientation domain cells
dominate in numbers, our model works well as an alternative to
divisive normalization in reproducing both the summation and
winner-take-all regimes.

Discussion
Our physiological results demonstrate that cortical neurons in
iso-orientation domains not only have narrower orientation
tuning, but also generate visual responses that are more sensitive
to contrast and more suppressed by non-preferred orientations
than cells in pinwheel centres. Neurons near pinwheel centres are
more broadly tuned for orientation and generate visual responses
that are more linearly related with contrast and less suppressed by
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patterns made of multiple orientations. The fact that cross-
orientation suppression varies across different regions of the
orientation map suggests a possible role for the cortical network
in shaping neuronal response properties. Using a computational
model, we show that applying the same cortical computation
homogeneously across primary visual cortex, we can generate
outputs that differ in contrast sensitivity, orientation tuning width
and cross-orientation suppression, as the cortical orientation
gradient varies between iso-orientation domains and pinwheel
centres. As variation in these outputs can be used to process
different features of natural scenes, our results have broader
implications for cortical processing and provide a possible
functional role of orientation maps in the visual cortex.

We propose the simplest model that can reproduce
the empirical associations that we discovered between cortical
topography and neuronal response properties. The most
important component is the cortical excitation from surrounding
neurons48. In iso-orientation domains, excitation has the effect of
narrowing the orientation tuning and increasing cross-orientation
suppression. In pinwheel domains, excitation broadens
orientation tuning and decreases cross-orientation suppression.
The effects of orientation topography thus supplement evidence
for the amplification of tuned thalamic excitation by cortical
circuits54–57.

The EN model needs a normalization component to replicate
the physiological differences in contrast saturation between
iso-orientation domains and pinwheel centres. Surround
normalization is widely proposed as the mechanism for many
kinds of cortical effects47,58; however, we chose not to use it
because it had undesired effects in iso-orientation domains and
pinwheel centres. As neurons in iso-orientation domains are
surrounded by cells with similar orientation preference, surround
normalization strongly reduced the response to the preferred
orientation, broadening the orientation tuning and weakening
cross-orientation suppression. On the other hand, because cells in
pinwheel centres have different orientation preferences, the
surround normalization narrowed the orientation tuning and
strengthened cross-orientation suppression. These effects are just
the opposite of what physiological measurements demonstrate.
It is worth noting that pinwheel centres constitute a small part of
striate cortex. Therefore, our simulations indicate that surround
normalization will generally broaden orientation tuning in
cortical orientation maps, contrary to what is usually presumed
in normalization models.

Making response functions more compressive in iso-orienta-
tion domains than pinwheel centres required using a
normalization approach that was different from surround
normalization. Therefore, we used a standard hyperbolic form
of self-normalization, but replaced the conventional semi-
saturation constant by the output of non-oriented inhibitory
neurons with severely compressed response functions, which are
common in the input layers of the visual cortex40,45,59. It is
noteworthy that in the absence of intra-cortical inhibition,
response redundancy would be greater in iso-orientation
domains than pinwheel centres. Therefore, the stronger
normalization in iso-orientation domains has the additional
benefit of equalizing redundancy across the cortical surface60.

The importance of cells that extract contours and edges has
been recognized since Hubel and Wiesel1; however, extra-striate
cells that are selective for specific classes of patterns and textures
have only been reported recently21,25. Our empirical results and
model simulations suggest that cells in pinwheel centres provide
suitable inputs for pattern selective cells, whereas cells in
iso-orientation domains enhance sensitivity to edges. If
excitatory connections between similar orientations dominate in
the visual cortex of rodents61, then these animals could have

sharp orientation tuning with high contrast sensitivity and strong
cross-orientation suppression even without orientation maps45.
Therefore, by lacking pinwheels, animals without orientation
maps would have limited pattern recognition, but they could still
rely on accurate detection of moving edges for survival.

Methods
Recording. MUA was recorded from the primary visual cortex of six anaesthetized
adult male cats via a 32 channel silicon probes with a 100mm inter-electrode distance
(NeuroNexus Technologies). The impedance of each electrode was B1 MO.
Recorded signals were amplified and filtered by a computer running Plexon
(Plexon). Offline software from Plexon was used to sort single units from MUA.

Animal surgery. Animals were sedated with ketamine (15 mg kg� 1) and
acepromazine (0.2 mg kg� 1), and anaesthetized with propofol (2 mg kg� 1). The
animals were continuously infused with fluid (2–3 ml kg� 1 h� 1) for hydration,
vecuronium bromide (0.2 mg kg� 1 h� 1) for muscle paralysis, and sufentanil
(10–20 ng kg� 1 h� 1) and propofol (B2–5 mg kg� 1 h� 1) for anaesthesia through
intravenous catheters placed in each hind leg. The eyes were treated with 1%
atropine sulfate to dilate the pupil and 2% neosynephrine to relax the nictitating
membrane. The refracted eyes were fit with contact lenses with a 3 mm pupil to
protect the cornea and focus stimuli on the retina at 57 cm viewing distance. All vital
signs were observed and maintained throughout the experiment, including
temperature, electrocardiogram, blood pressure, expired CO2 and heart rate. Area 17
was exposed by removing the skull and dura overlaying the region. Electrode probes
were inserted tangentially with a horizontal angle of less than 5� at the centre of the
gyrus. All procedures were performed in accordance to the guidelines of the U.S.
Department of Agriculture and approved by the Institutional Animal Care and Use
Committee at the State University of New York, College of Optometry.

Stimuli. We stimulated V1 neurons by monocular presentation of different visual
stimuli on a 20-inch CRT monitor (Nokia 445Xpro, Salo). Two sequences of full
field stimuli were generated and presented using Matlab routines in the
Psychophysics Toolbox. The first set consisted of single sinusoidal gratings at eight
equally spaced orientations: 0�, 22.5�, 45�, 67.5�, 90�, 112.5�, 135� and 157.5�.
Each stimulus was flashed at four different phases: 0, pi/2, pi and 3pi/2 radians, and
at seven different contrasts: 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1. The second set
consisted of plaids made by adding pairs of 50% contrast gratings in all possible
phase and orientation combinations. Each image was flashed for 100 ms and
followed by 100 ms of a blank mid-grey screen. In both sets, the image sequences
were randomized and each image was presented 20 times. Multiple blocks of
stimuli were run on individual cats.

Selection of sites. MUA sites used in subsequent analyses had to pass a number
of criteria. First, they needed to pass a signal-to-noise ratio (45), which was
calculated as the ratio between mean response of the preferred orientation at full
contrast and the s.d. of the least preferred orientation at the lowest contrast. This
threshold was determined by careful inspection of peristimulus time histograms
that were fit using the Bayesian adaptive regression splines method to get a smooth
estimate of firing rate62. They were also averaged across all phases and all trials.
Response magnitude was quantified as the total number of spikes during stimulus
presentation, that is, the area under the Bayesian adaptive regression splines curve.
Recording sites were only included in the analyses if it was possible to calculate an
LHI for that site. An accurate measure of LHI required at least three recording sites
on either side of the reference site to pass the signal-to-noise ratio and contrast
response fit requirements (RZ0.95). Single units were isolated from sites where it
was possible to calculate an LHI (we also required that the contrast response of the
single units could be well fit by a Naka Rushton (RZ0.95), and that the orientation
tuning could be well fit by a Von Mises function (RZ0.7)). Peristimulus time
histograms for each plaid combination (averaged across all phase combinations
and trials) were also fit with a smooth curve using the Bayesian adaptive regression
splines method and the magnitude of the response was quantified in the same way
as for gratings.

Contrast response. At each recording site, a contrast response function was fit to
responses evoked by single gratings with the preferred orientation at varying con-
trasts. The classic Naka–Rushton formulation of the hyperbolic ratio was used63:

f ðcÞ ¼ Rmax
cn

cn
50þ cn

Here, f gives the response to a grating of contrast, c. Rmax is the maximal response, c50

is the semi-saturation constant and n is the exponent determining the shape of the
function. Only recording sites at which the contrast response function could be well
fit (RZ0.95) were used for subsequent analysis. The parameters displayed on the
figures were estimated from the best fitting curves. As f(1.0) can be different from
Rmax, we calculated the maximum response as the fitted function output at 100%
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contrast and the semi-saturation constant as the contrast value at which the fitted
function yields half of the function value at full contrast.

Orientation tuning width. Orientation tuning curves were fit to the full-contrast
single-grating responses at each site with a Von Mises function. We used the half
width at half height as a measurement for orientation tuning bandwidth and the
stimulus orientation at the peak of the orientation tuning as the orientation
preference. Based on the criterion on signal to noise and contrast response fit
described above, all multi-units that remained in the analysis were generally well fit
by the Von Mises function (mean R¼ 0.9208). We also calculated the circular
variance as an estimate of orientation tuning width. Results were fairly similar for
the two measures.

Suppression index. A SI was determined for each plaid containing the preferred
orientation at each recording site:

SI yp; yi
� �

¼ 1� Rðyp; yiÞ
RðypÞ

R(yp, yi) represents the response to a plaid that includes the preferred grating, yp,
and R(yp) represents the response to the preferred grating at 0.5 contrast. This SI
highlights the fact that many plaids evoke responses smaller than their preferred
component.

Local homogeneity index. The tangential insertion of the multi-electrode array
and inter-electrode distance of 100 mm allows us to estimate the location of each
recording site within the orientation map. We used a one-dimensional (1D) version
of the Nauhaus et al.17 LHI, to measure how quickly the orientation preference is
changing around each site. The LHI for a given site was calculated by finding the
magnitude of a vector addition. Each neighbouring neuron contributes a vector to
the sum. The angle of the vector is given by the preferred orientation and the
magnitude by a Gaussian weighting of cortical distance from the reference neuron.
Explicitly the LHI for a given neuron is:

LHI ¼
X

ke
�Distancej 2

2s2 e2iOj

The sum is over all neighbouring neurons. The distancej measures how far
neuron j is from the given neuron in microns; Oj is the orientation preference of
neuron j; s is set to 180mm (our measurements are spaced by 100 mm); And k is a
constant equal to the inverse of the theoretically maximum LHI, to ensure that LHI
ranges from 0 to a maximum of 1. We use the same spatial Gaussian at all locations
and analysed recording sites that were surrounded by other sites that passed our
inclusion criteria. Therefore, all locations have the same number of elements
contributing to the index.

We have checked our 1D estimates of homogeneity against two-dimensional
(2D) estimates obtained from two published orientation maps64 and our own
orientation map. First, we calculated the orientation maps (Fig. 8a). Then, we
compared the 2D LHI with the mean of eight 1D LHI measured at equally spaced
penetration orientations in multiple locations (Fig. 8b). Finally, we estimated the
chance that recordings in pinwheel domains were misclassified as iso-orientation
domains in our 1D recordings. We found that the 1D and 2D estimates are strongly
correlated and are accurately described by a slightly curved function. Therefore,
although the 1D LHI may slightly overestimate homogeneity, no area with 2D LHI
of o0.2 will be classified as iso-orientation, as the 1D LHI will at most be 0.2
higher. These simulations show that linear arrays can be reliably used to identify
and investigate orientation domains.

Nonlinearity index. To capture the saturation of the contrast responses curve with
a single index, we joined the point of the curve corresponding to half the maximum
response to the point of the curve corresponding to the maximum response. We
then calculated the area between this line and the corresponding segment of the
curve, positive for above the line and negative for below. We then normalized this
value by the area between this line and the curve of maximum saturation. The
curve of maximum saturation is formed by a vertical line from half the maximum
response (half of the function output at 100% contrast) to the horizontal line at the
maximum response (the function output at 100% contrast). Hence, the Non-
linearity Index ranged from � 1.0 for maximum expansion, to 0.0 for linearity, to
1.0 for maximum saturation.

Model specification. The luminance value of each pixel of a stimulus S(x,y) is
passed through a point-wise Naka–Rushton function to get the photoreceptor
output, P(x,y). Here, L50 is the semi-saturation luminance:

P x; yð Þ ¼ Rmax
Sðx; yÞ

Sðx; yÞþ L50
ð1Þ

The photoreceptor output P(x,y) is convolved with the receptive fields of
ON-Center and OFF-Center thalamic neurons, modelled as difference of Gaussian
functions, D(x,y), to obtain the thalamic responses (Ton and Toff):

TON x; yð Þ ¼ P x; yð Þ�D x; yð Þ ð2Þ

TOFF x; yð Þ ¼ P x; yð Þ��D x; yÞð ð3Þ

D x; yð Þ ¼ 1
2ps2

1
e
� x2 þ y2ð Þ2

2s2
1 � 1

2ps2
2

e
� x2 þ y2ð Þ2

2s2
2 ð4Þ

s1 is the s.d. of the receptive field centre and s2 is the s.d. of the surround
(s1 is 1/3 of s2).
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The total thalamic input (Ttot) to a cortical neuron with a preferred vertical
orientation is formed by aligning multiple thalamic receptive fields in a vertical row
and combining them with a push–pull mechanism:

Ttot ¼ Tpush �Tpull ð5Þ

TPush ¼
X

TOFFðx1; yiÞ½ �þ þ
X

TONðx2; yiÞ�þ
�

ð6Þ

TPull ¼
X

�TOFFðx1; yiÞ½ �þ þ
X

�TONðx2; yiÞ�þ
�

ð7Þ

where x1 and x2 define the vertical columns over which the i thalamic inputs are
summed after they are rectified. The cortical orientation tuning was made narrower
by increasing the number of thalamic neurons (i) and making longer vertical
columns. Responses of neurons at other orientations were calculated by rotating
the stimulus.

The total thalamic input was then passed through a power-law spiking
nonlinearity to get the cortical response, C:

C ¼ AðTtotÞm ð8Þ
A is a scaling constant adjusted to keep the response of the cortical neuron within a
particular range and the exponent m is set to 2, which is within the range of
measured values.

We added distance-tuned excitation to the model by multiplying the cortical
response by a sum of Gaussian weighted responses from orientation-tuned cells in
the local cortical neighbourhood, CE:

CE ¼ C
XN

j¼1
Cjwj ð9Þ

wj ¼ ke
�Distancej

2

2s2 ð10Þ
wj is the weight from each jth neuron from the cortical neighbourhood, given by a
Gaussian with s¼ 180 mm (as in the LHI calculation) and a constant k that is set so
that all weights sum to 1.

The response of the cortical cell (CE) was then self-normalized using a
Naka–Rushton function. The normalization included also the output of a
non-oriented inhibitory neuron CU, which acts as the semi-saturation constant in
the Naka–Rushton function. The normalized cortical response, CEN, is given by:

CEN ¼ Rmax½
CE

b0 þ b1CU þ b2CE
� ð11Þ

Rmax is the maximum response of the neuron, CU is the response of an inhibitory
un-oriented cell in the local cortical neighbourhood, b0 is a small number (set here
to 0.01) that keeps the denominator above zero. b1 and b2 are weights given to each
normalization term. These parameters can be manipulated in simulations, but were
left at 1.0 for the predictions in Fig. 4.

It is important to note that the input to the model is exactly the same across the
cortex, as are the parameters of local cortical excitation and normalization. The
response differences in contrast saturation and orientation suppression arise solely
because of the differences in the local distribution of orientation preferences
between iso-orientation domains and pinwheel centres (Fig. 4a).

We used a basic form of response normalization for the predictions made in
Fig. 6, using thalamic inputs rather than stimulus contrast. The thalamic
contribution to the divisive normalization model is identical to that for the EN
model. The cortical response from the thalamic afferents was divided by the
weighted population response that was previously used for excitation in the EN
Model. The response of a cortical neuron for the population normalization
model,CN, is given by:

CN ¼
C

b0 þ
PN

j¼1 Cjwj
ð12Þ

Here, all variables are as before.

Data availability. Source data available as .mat files and model matlab code is
available as .m file upon request.
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